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Heteroskedastiticy and 

Autocorrelation
(Verbeek, Chapter 4)
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Gauss-Markov conditions and OLS

Recall the Gauss-Markov conditions for the linear model

 yi = xi‘β + εi,    (4.1)

which state:

(A1) Error terms have mean zero: E{εi}=0

(A2) All error terms are independent of all x  

 variables: 

  {εi ,… εN} is independent of {x1,… xN}

(A3) All error terms have the same variance        

(homoskedasticity): V{εi} = σ2.

(A4) The error terms are mutually uncorrelated (no 

autocorrelation): cov{εi,,εj} = 0,  i ≠ j.
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Estimator properties

Under assumptions (A1) and (A2):

1. The OLS estimator is unbiased. That is, E{b} = β. 

Under assumptions (A1), (A2), (A3) and (A4): 

2. The variance of the OLS estimator is given by

  V{b} = σ2( Σi xi xi’ )
-1    (2.33)

3. And s2 (see (2.35)) is unbiased for σ2.

4. The OLS estimator is BLUE: best linear unbiased 

estimator for β.



5

Gauss-Markov conditions

• Denoting the N-dimensional vector of all error 

terms by ε, and the entire matrix of explanatory 

variables by X, the two essential implications of the 

Gauss-Markov conditions are:

  E{ ε | X} = 0     (4.3)

 and

  V{ε | X} = σ2I,     (4.4)

where I is the NxN identity matrix. 

• This says: the distribution of error terms given X 

has means of zero and constant variances and 

zero covariances (spherical correlation matrix). 



Conditional Homoscedasticity and 

Nonautocorrelation 

Disturbances provide no information about each other.

– Var[i | X ]     = 2 

– Cov[i, j  |X] = 0
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Violation 1: heteroskedasticity

Heteroskedasticity arises if different error terms do not 

have the same variance. When do we expect this?

▪ Variances depend upon one or more explanatory 

variables (e.g., firm size);

▪ Variances evolve over time (time-varying volatility);

Example 1: explaining household food expenditures 

from household income (or total expenditures). For 

higher income, we expect higher savings but also 

more uncertainty surrounding savings.

Example 2: explaining or forecasting daily stock 

returns.



8

Violation 1 (exp1): 

heteroskedasticity



Violation 1 (exp 1): homoscedasticity 

and heteroscedasticity
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Violation1 (exp 1): 

heteroscedasticity

Regression of log of per capita gasoline use on log of per capita income, 

gasoline price and number of cars per capita for 18/30 OECD countries for 

19 years. The standard deviation varies by country (source: Greene, 2018)

Countries 

are ordered 

by the 

standard 

deviation of 

their 19 

residuals.
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Violation 1 (exp 2): 

heteroscedasticity
The daily level of the CBOE VIX Volatility Index back to 1990. The VIX index 

measures the expectation of stock market volatility over the next 30 days 

implied by S&P 500 index options
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Violation 2: autocorrelation

Autocorrelation (serial correlation) arises if different 
error terms are correlated. This mostly occurs with 
time-series data

When do we expect this?

▪ Unobservables (model imperfections) from one 
period partly carry over to the next

▪ Model is missing seasonal patterns

▪ Model is based on overlapping samples (e.g., 
quarterly returns observed each month)

▪ Model is otherwise misspecified (omitted 
variable, incorrect dynamics, etc.) 



Violation 2: autocorrelation
(source: Greene, 2018)

log(G/pop)=β1 + β2logPg + β3log(income/pop) + β4logPnc + β5logPuc + ε 
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Conditional Homoscedasticity and 

Nonautocorrelation 

Disturbances provide no information about each other.

– Var[i | X ]     = 2 

– Cov[i, j  |X] = 0
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Consequences

The consequences of both problems are similar

As long as (4.3) holds, the OLS estimator is still unbiased. 

However, if (4.4) is violated:

• OLS is no longer BLUE

• Routinely computed standard errors are incorrect

This also indicates three general ways to deal with the problem:

• Use alternative standard errors; 

• Use an alternative estimator (more efficient than OLS); or

• Reconsider the employed model.

The second option is becoming less and less popular, and the third option is often 

employed with autocorrelation (for heteroscedasticity – try with logs). 
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Solution 1: Computing robust 

standard errors

• When V{ε | X} is diagonal, but with different diagonal 

elements, we have heteroskedasticity but no autocorrelation

• Thus, assumption (A3) becomes:

  

                                     V{εi} = σ2
i = σ2h2

i 

• Without additional assumptions, it is not possible to estimate 

σ2
i . This is because each observation has its own unknown 

parameter

• Fortunately, it is possible to estimate standard errors for OLS 

without specifying σ2
i . This is attributed to (Eicker and 

White)
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Solution 1: Computing robust 

standard errors (II)

• The White (heteroskedasticity-consistent) 

covariance matrix can be computed from the 

regressors and the OLS residuals. Its formula is given in 

(4.30):

• If we use this formula to compute standard errors rather 

than the standard one from (2.36), we can continue as 

before with our (t-)tests. This is appropriate, whether 

or not the errors have a constant variance. We call this 

“heteroskedasticity-robust inference”
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About White standard errors

• In many cases, using White (heteroskedasticity-consistent) 

standard errors is appropriate and a good solution to the 

problem of heteroskedasticity

• They are easily available in most modern software

• It allows one to make appropriate inference without 

specifying the type of heteroskedasticity

• This is (almost) standard in many applications in finance, 

most prominently with high-frequency data (e.g., daily 

returns)

• Sometimes, we would like to have a more efficient 

estimator, by making some assumption about the form of 

heteroskedasticity
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Solution 2: Deriving an alternative 

estimator 
Trick: we know that OLS is BLUE under the Gauss-Markov conditions

1. Transform the model such that it satisfies the Gauss-Markov 

assumptions again

2. Apply OLS to the transformed model

This leads to the generalized least squares (GLS)  estimator, which 

is BLUE. 

• Transformation often depends upon unknown parameters

(characterizing heteroskedasticity or autocorrelation). 

3. Estimate them first and transform as before.

This leads to a feasible GLS (FGLS, EGLS) estimator, which is 

“approximately” BLUE
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Solution 2: Deriving an alternative 

estimator (II)

With heteroskedasticity we have 

 V{εi} = σ2
i = σ2h2

i .

Then

 yi /hi = (xi /hi)’β + εi /hi   (4.16)

has an homoskedastic error term. 

OLS applied to this transformed model gives

which is a weighted least squares estimator. 
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Solution 2: Deriving an alternative 

estimator (III)
• The weighted least squares estimator is a least squares 

estimator where each observation is weighted by (a factor 

proportional to) the inverse of the error variance

• Observations with a higher variance get a lower weight 

(because they provide less accurate info on β)

• The resulting estimator is more efficient (more accurate) 

than OLS

• However, it can only be applied if we know hi (we rarely do) 

or if we can estimate it by making additional restrictive 

assumptions on the form of hi (we may not like this)
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Multiplicative heteroskedasticity 

• Assume

where zi is a function (subset) of xi. Note that the functional 

form is such that the variances are never negative. 

• To estimate α we run an auxiliary regression

where                             is an error term. 

• This provides a consistent estimator for α, which can be 

used to transform the model
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Multiplicative heteroskedasticity (II) 

• To obtain the EGLS estimator, compute

and transform all observations to obtain 

• The error term in this model is (approximately) 

homoscedastic. Applying OLS to the transformed 

model gives the feasible or estimated LS estimator 

for β (FGLS or EGLS)

• Note: the transformed regression is for computational 

purposes only. All economic interpretations refer to the 

original model!
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The Breusch-Pagan test

• The Breusch-Pagan test tests whether the error variance 

is a function of zi . In particular, the alternative hypothesis 

is 

for some function h with h(0)=1. The null is α = 0

(homoscedasticity)

• It is based on regressing the squared OLS residuals upon zi. In 

this case we choose zi equal to the original regressors

• Test statistic: N multiplied by R2 of the auxiliary regression. Has Chi-

squared distribution (DF=dimension of zi) – Lagrange multiplier 

(LM) test 
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The White test

• The White test tests whether the error variance is a function of 

the explanatory variables, with a more general alternative than 

Breusch-Pagan

• It is based on regressing the squared OLS residuals upon all 

regressors, their squares and their (unique) cross-products

• Test statistic: N multiplied by R2 of the auxiliary regression. Has 

Chi-squared distribution (DF = # variables in auxiliary 

regression)

• Advantage: general

• Disadvantage: general - low power in small samples
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Illustration: explaining labor demand

• We estimate a simple labor demand function for a sample 

of 569 Belgian firms (from 1996)

• We explain labor from output, wage costs and capital 

stock.  

• Note that the variables are scaled (to obtain coefficients in 

the same order of magnitude)
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A linear model 
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Breusch-Pagan test 
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The Breusch-Pagan test

• Striking in this auxiliary regression are the (very) high t-ratios and 

the high R2

• This indicates that the squared errors are strongly related to zi

• Recall that the expected value of ε2
i should be equal to σ2 in 

case of homoskedasticity

• Test statistic: N x R2, gives 331.0, which provides a very strong 

rejection! 

• This is not uncommon in models like this: assume all firms are 

“identical”, except on a different scale, then we expect the 

standard deviation of εi to be different
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A loglinear model 
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The White test 
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The White test

• With an R2 of 0.1029, this leads to a value for the White test 

statistic of 58.5, which is highly significant for a Chi-squared 

with 9 degrees of freedom

• Given the strong rejection, we next estimate the loglinear 

model using White standard errors

• These are standard errors that are robust to 

heteroskedasticity. That is, are correct even if errors are 

heteroskedastic

• Note: parameters estimates, and goodness-of-fit measures 

do not change. Standard errors, and F-test are adjusted
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A loglinear model with White s.e.’s 
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Multiplicative heteroskedasticity 
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Is form of heteroskedasticity is too 

restrictive?

Omitted Variables Test

Equation: AUX_REG

Omitted Variables:  LOG(WAGE)^2 LOG(CAPITAL) 2̂ LOG(OUTPUT)^2

Specification: LOG(RES2*RES2) C LOG(WAGE) LOG(CAPITAL)

        LOG(OUTPUT)

Null hypothesis:  LOG(WAGE)^2 LOG(CAPITAL) 2̂ LOG(OUTPUT)^2

        are jointly insignificant

Value df Probability

F-statistic  1.851530 (3, 562)  0.1367

Likelihood ratio  5.596165  3  0.1330

F-test summary:

Sum of Sq. df Mean Squares

Test SSR  27.75637  3  9.252123

Restricted SSR  2836.079  565  5.019609

Unrestricted SSR  2808.323  562  4.997015

LR test summary:

Value

Restricted LogL -1264.368

Unrestricted LogL -1261.570
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EGLS loglinear model 



EGLS from EViews
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Dependent Variable: LOG(LABOUR)/WEIGHT

Method: Least Squares

Date: 11/22/23   Time: 21:57

Sample: 1 569

Included observations: 569

Variable Coefficient Std. Error t-Statistic Prob.  

1/WEIGHT 5.895357 0.247638 23.80639 0.0000

LOG(WAGE)/WEIGHT -0.855579 0.071876 -11.90347 0.0000

LOG(OUTPUT)/WEIGHT 1.034611 0.027306 37.88991 0.0000

LOG(CAPITAL)/WEIGHT -0.056864 0.021576 -2.635531 0.0086

R-squared 0.905087     Mean dependent var 24.03639

Adjusted R-squared 0.904583     S.D. dependent var 8.122786

S.E. of regression 2.509096     Akaike info criterion 4.684727

Sum squared resid 3556.994     Schwarz criterion 4.715264

Log likelihood -1328.805     Hannan-Quinn criter. 4.696643

Durbin-Watson stat 1.961772
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Remarks

• Comparing Table 4.7 and 4.5, we see that the efficiency gain is 

substantial

• Comparison with Table 4.3 is not appropriate. This table is wrong 

and misleading

• The coefficient estimates are fairly close to the OLS ones. Note 

that the effect of capital is now statistically significant

• The R2 in Table 4.7 is misleading, because 

 - it applies to the transformed model (not the original one) 

 - is uncentered because there is no intercept

▪ Recall that OLS always provides higher R2s than does GLS
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Autocorrelation
• Autocorrelation typically occurs with time series data (where 

observations have a natural ordering)

• To stress this, we shall index the observations by 

 t = 1,…,T, rather than i = 1,..,N

• The error term picks up the influence of those (many) variables and 

factors not included in the model. 

• If there is some persistence in these factors, (positive) 

autocorrelation may arise

• Thus, autocorrelation may be an indication of a misspecified model 

(omitted variables, incorrect functional forms, incorrect dynamics)

• Accordingly, autocorrelation tests are often interpreted as 

misspecification tests
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Positive autocorrelation
Demand for ice cream explained from income and 

price index



Violation 2: autocorrelation (positive)

et

time
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Violation 2: autocorrelation (positive)
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First-order autocorrelation

• Many forms of autocorrelation exist. The most popular 

one is first-order autocorrelation.

• Consider

where the error term depends upon his predecessor as

where vt is an error with mean zero and constant variance.

 

• Assumptions are such that the Gauss-Markov conditions 

arise if ρ = 0. 



44

Properties of εt

To determine the properties of εt, we assume | ρ | < 1

(stationarity – see Ch. 8 / forthcoming TSA course ). 

Then it holds that:

such that

(note that this requires -1 < ρ < 1.)
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Properties of εt

• Further 

and

and in general

       (s > 0).
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Solution 1: Computing HAC standard 

errors
• Similar to the White standard errors for heteroskedasticity, 

it is also possible to correct OLS standard errors for hetero 

and autocorrelation

• This is typically attributed to Newey and West (HAC-

heteroscedasticity-and-autocorrelation-consistent standard 

errors)

• It is appropriate if the autocorrelation is restricted to a 

maximum number of lags (so strictly speaking only with 

moving average errors)

• The number of lags can be chosen by the researcher, 

although some programmes (e.g., EViews) have standard 

choices depending upon sample size. 
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Solution 2: Deriving an alternative 

estimator- first-order autocorrelation

• Thus, this form of autocorrelation implies that all error 

terms are correlated. Their covariance decreases if the 

distance in time gets large

• To transform the model such that it satisfies the 

Gauss-Markov conditions we use

• With known ρ, this produces (almost) the GLS 

estimator. Note: first observation is lost by this 

transformation (see p. 115 on how to handle this) 

• Of course, typically ρ is unknown
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Estimating ρ

• First estimate the original model by OLS. This gives the 

OLS residuals

• Starting from 

it seems natural to estimate ρ by regressing the OLS 

residual et upon its lag et-1. This gives

• While this estimator is typically biased, it is consistent 

for ρ under weak conditions
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Testing for first-order auto-correlation. 1. 

Asymptotic tests

• The auxiliary regression producing      also provides a 

standard error to it. The resulting t-test statistic is 

approximately equal to 

                

• We reject the null (no autocorrelation) against the 

alternative of nonzero autocorrelation if |t| > 1.96 (95% 

confidence)

• Another form is based on (T-1) x R2 of this regression, 

to be compared with Chi-squared distribution with 1 DF 

(reject if > 3.86)
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Testing for first-order auto-correlation. 1. 

Asymptotic tests

Two remarks:

• If the model of interest contains lagged values of yt (or 

other explanatory variables that may be correlated with 

lagged error terms), the auxiliary regression should also 

include all explanatory variables (just to make sure the 

distribution of the test is correct) – special case of 

Breusch-Godfrey LM test

• If we also suspect heteroskedasticity, White standard 

errors may be used in the auxiliary regression. 
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Testing for first-order auto-

correlation. 2. Durbin-Watson test
• This is a very popular test, routinely computed by most 

regression packages (also if it is not appropriate!)

• Requirements: (a) intercept in the model, and (b) assumption 

(A2), so no lagged dep. variables! 

• The test statistic is given by

which is approximately equal to
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Testing for first-order auto-

correlation. 2. Durbin-Watson test

• Distribution is “peculiar”. 

• Moreover, it depends upon xt’s. 

In general, dw values close to 2 are fine, while dw values 

close to 0 imply positive autocorrelation. 

The exact critical value is unknown, but upper and 

lower bounds can be derived (see Table 4.8). 

Thus (to test for positive autocorrelation):

• dw is less than lower bound: reject

• dw is larger than upper bound: not reject

• dw is in between: inconclusive. 

The inconclusive region becomes smaller if T gets large. 
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Bounds on critical values

Durbin-Watson test
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Illustration: the demand for ice 

cream

Based on classic article Hildreth and Lu (1960), based 

on a time-series of 30 (!) four-weekly observations 

1951-1953. 

See Figure 4.2 for three of these series
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Illustration: the demand for ice 

cream
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OLS results
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Actual and fitted values
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Estimating ρ

• Regressing the OLS residuals upon their lag gives

• This gives test statistics: 

• Both reject the null of no autocorrelation. EGLS or

change model specification?
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EGLS

Note: starred statistics are for the transformed model. 
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Alternative model with lagged 

temperature

. 



Testing for first-order auto-correlation. 2a. 

Durbin-Watson test 

(in models with lagged dep. var.)
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Alternative autocorrelation 

patterns

• Consider

with first order (autoregressive) autocorrelation

• This implies that all errors are correlated with each other, with 

correlations becoming smaller if they are further apart. 

Two alternatives: 

1. higher order patterns;

2. moving average patterns.
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Higher order autocorrelation

• With quarterly or monthly (macro) data, higher order 

patterns are possible (due to a periodic effect). For 

example, with quarterly data:

or, more generally

known as 4th order (autoregressive) autocorrelation

• Correlations between different error terms are more 

flexible than with 1st order



Breusch–Godfrey test
• Baseline regression:

Yt = β0 + β1X1t + β2X2t + εt

• Auxiliary regression:

• Null hypothesis: : ρ1 = ρ2 =... =ρm =0 

• Test statistic: T multiplied by R2 of the auxiliary 

regression. Has Chi-squared distribution 

(DF=dimension of m) – Lagrange multiplier (LM) test 

• Works in models with lagged dep. variable
64

,...221122110 tmtmttiit veeeXXe +++++++= −−− 
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Moving average autocorrelation

• Arises if the correlation between different error terms is 

limited by a maximum time lag

• Simplest case (1st order):

• This implies that εt is correlated with εt-1 , but not with εt-2 

or εt-3, etc. 

• Moving average errors arise by construction when 

“overlapping samples” are used (see Illustration in 

Section 4.11)
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What to do when you find 

autocorrelation?
In the preferred order:

1. Reconsider the model: 

 1a: change functional form (e.g., use log(x) rather than 

x), see Figure 4.5.

 1b: extend the model by including additional 

explanatory variables (seasonals) or additional lags;

2. Compute heteroskedasticity-and-autocorrelation 

consistent standard errors (HAC standard errors) for 

the OLS estimator;

3. Reconsider options 1 and 2;

 if you are sure:

4. Use EGLS with existing model. 
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Wrong functional form
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Incomplete dynamics
• Consider the model 

 yt = xt’β + εt

which describes E{yt | xt } = xt’β, even if εt = ρεt-1 + vt 

• However, it also describes

 E{yt | xt, xt-1, yt-1} = xt’β + ρ (yt-1 – xt-1’β)

• Accordingly, we can also write the linear model

 yt = xt’β + ρ yt-1 – ρxt-1’β + vt, 

where the error term does not exhibit serial correlation 

• In many cases, including lagged values of y and/or 

x will eliminate the serial correlation problem
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